

Certificate of Analysis Powered by Confident Cannabis

Sample: 2208DBL0078.4275

METRC Sample: Batch #: T0722-03

Ordered: 08/16/2022; Sampled: 09/14/2022; Completed: 09/19/2022

Strain: PREMIUM CBD OIL - CITRUS 300MG

Premium Jane

Scottsdale, AZ 85251 info@premiumjane.com (844) 259-5092 Lic.#

PREMIUM CBD OIL - CITRUS 300MG

Ingestible, Tincture, Hexane

Microbials

Mycotoxins

Heavy Metals

Foreign Matter

Solvents

Terpenes Analyzed by 300.13 GC/FID and GC/MS

Compound	LOQ	Mass	Mass	Relative Concentration
	mg/unit	mg/unit	mg/g	
δ-Limonene	3.348	149.614	4.987	
β-Pinene	3.348	27.193	0.906	
p-Cymene	3.348	14.379	0.479	
y-Terpinene	3.348	13.650	0.455	
δ-3-Carene	3.348	5.421	0.181	
α-Pinene	3.348	4.307	0.144	1
β-Myrcene	3.348	3.664	0.122	1
α-Bisabolol	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
α-Humulene	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
α-Terpinene	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
β-Caryophyllene	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Camphene	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Caryophyllene Oxide	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
cis-Nerolidol	2.176	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
cis-Ocimene	2.176	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Eucalyptol	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Geraniol	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Guaiol	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Isopulegol	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Linalool	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Terpinolene	3.348	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
trans-Nerolidol	1.172	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
trans-Ocimene	1.172	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	

Cannabinoid Relative Concentration Analyzed by 300.18 UHPLC/PDA

				Not T	ested	
0.036% Δ9-THC + Δ8-7		329.418 m g	g/unit	pH: Aw:	NT NT	
		354.890 mg otal Cannal		Not Tested Homogeneity		
Compound	LOQ	Mass	Mass	Relative Con	centration	
11 / 1	mg/unit	mg/unit	mg/g		15	
CBC	1.431	14.580	0.486			
CBCa	1.431	<loq< td=""><td><loq< td=""><td>V</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>V</td><td></td><td></td></loq<>	V		
CBD	1.431	329.418	10.981			
CBDa	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CBDV	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CBDVa	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CBG	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CBGa	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CBL	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CBN	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
Δ8-THC	1.431	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
Δ9-THC	1.431	10.892	0.363	1/5		
THC	1 /121	<100	100			

1 Unit = PREMIUM CBD OIL - CITRUS 300MG, 30g Total THC = 0.877 x THC-A + Δ9-THC + Δ8-THC; Total CBD = CBDa * 0.877 + CBD

Glen Marquez Laboratory Director

THCV **THCVa**

Sherri Defreece Quality Control

Certificate of Analysis Powered by Confident Cannabis

Sample: 2208DBL0078.4275

METRC Sample: Batch #: T0722-03

Ordered: 08/16/2022; Sampled: 09/14/2022; Completed: 09/19/2022

Strain: PREMIUM CBD OIL - CITRUS 300MG

Premium Jane

Scottsdale, AZ 85251 info@premiumjane.com (844) 259-5092 Lic.#

PREMIUM CBD OIL - CITRUS 300MG

Ingestible, Tincture, Hexane

Pesticides Analyzed by 300.9 LC/MS/MS and G	GC/MS/MS			Pass
Commonad	LOQ	Limit	Mass	Status
Compound				Status
	PPB	PPB	PPB	
Abamectin	10	0	<loq< th=""><th>Pass</th></loq<>	Pass
Acequinocyl	10	4000	<loq< th=""><th>Pass</th></loq<>	Pass
Bifenazate	10	400	<loq< th=""><th>Pass</th></loq<>	Pass
Bifenthrin	10	0	<loq< th=""><th>Pass</th></loq<>	Pass
Cyfluthrin	10	2000	<loq< th=""><th>Pass</th></loq<>	Pass
Cypermethrin	10	0	<loq< th=""><th>Pass</th></loq<>	Pass
Daminozide	10	0	<loq< th=""><th>Pass</th></loq<>	Pass
Dimethomorph	10	2000	<loq< th=""><th>Pass</th></loq<>	Pass
Etoxazole	10	400	<loq< th=""><th>Pass</th></loq<>	Pass
Fenhexamid	10	1000	<loq< th=""><th>Pass</th></loq<>	Pass
Flonicamid	10	1000	<loq< th=""><th>Pass</th></loq<>	Pass
Fludioxonil	10	500	33	Pass
Imidacloprid	10	500	<loq< th=""><th>Pass</th></loq<>	Pass
Myclobutanil	10	400	<loq< th=""><th>Pass</th></loq<>	Pass
Paclobutrazol	10	0	<loq< th=""><th>Pass</th></loq<>	Pass
Piperonyl Butoxide	10	3000	68	Pass
Pyrethrins	10	2000	<loq< th=""><th>Pass</th></loq<>	Pass
Quintozene	10	800	<loq< th=""><th>Pass</th></loq<>	Pass
Spinetoram	10	1000	<loq< th=""><th>Pass</th></loq<>	Pass
Spinosad	10	1000	<loq< th=""><th>Pass</th></loq<>	Pass
Spirotetramat	10	1000	<loq< th=""><th>Pass</th></loq<>	Pass
Thiamethoxam	10	400	<loq< th=""><th>Pass</th></loq<>	Pass
Trifloxystrobin	10	1000	<loq< th=""><th>Pass</th></loq<>	Pass
Plant Growth Regulators	10	50	<loq< th=""><th>Pass</th></loq<>	Pass

Microbials Analyzed by 300.1 Plating/QPCR			F	ass
Quantitative Analysis	LOQ	Limit	Mass	Status
_5	CFU/g	CFU/g	CFU/g	
Aerobic Bacteria	900	100000	<loq< td=""><td>Pass</td></loq<>	Pass
Bile-Tolerant Gram-Negative Bacteria	90	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Coliforms	90	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Yeast & Mold	90	10000	<loq< td=""><td>Pass</td></loq<>	Pass
Qualitative Analysis	Detected or Not Detected		Status	
E. Coli	Not Detected			Pass
Salmonella	Not Detecte	d		Pass

Mycotoxins Analyzed by 300.2 Elisa				Pass
Mycotoxin	LOQ	Limit	Mass	Status
	PPB	PPB	PPB	
Aflatoxins	4.0	20.0	<loq< td=""><td>Pass</td></loq<>	Pass
Ochratoxin A	2.0	20.0	<loq< td=""><td>Pass</td></loq<>	Pass

Heavy Meta Analyzed by 300.8 IC				Pass
Element	LOQ	Limit	Mass	Status
181	PPB	PPB	PPB	3/1 1
Arsenic	56	2000	<loq< td=""><td>Pass</td></loq<>	Pass
Cadmium	56	820	<loq< td=""><td>Pass</td></loq<>	Pass
Lead	56	1200	<loq< td=""><td>Pass</td></loq<>	Pass
Mercury	56	400	<loq< td=""><td>Pass</td></loq<>	Pass

Residual Solv Analyzed by 300.13 GC				Pass
Compound	LOQ	Limit	Mass	Status
	PPM	PPM	PPM	7.7%
Butanes	71	500	<loq< td=""><td>Pass</td></loq<>	Pass
Ethanol	71		<loq< td=""><td>Tested</td></loq<>	Tested
Heptanes	71	500	<loq< td=""><td>Pass</td></loq<>	Pass
Propane	71	500	<loq< td=""><td>Pass</td></loq<>	Pass

Sherri Defreece

Quality Control

