

Certificate of Analysis Powered by Confident Cannabis

Sample: 2110DBL0225.10137
METRC Sample:

Batch #: T0921-18

Strain: Mint 600mg FS Tincture

Ordered: 10/21/2021; Sampled: 10/25/2021; Completed: 10/28/2021

Premium Jane

77 Derry Street Hudson, NH 03051 855-774-5263

Mint 600mg FS Tincture

Ingestible, Tincture, Hexane

Microbials

Mycotoxins

Heavy Metals

Foreign Matter

Solvents

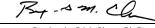
Terpenes

Analyzed by 300.13 GC/FID and GC/MS

4.481 mg/unit **Total Terpenes**

Compound	LOQ	Mass	Mass	Relative Concentration
	mg/unit	mg/unit	mg/g	
Eucalyptol	2.894	4.481	0.149	
α-Bisabolol	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
α-Humulene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
α-Pinene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
α-Terpinene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
β-Caryophyllene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
β-Myrcene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
β-Pinene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Camphene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Caryophyllene Oxide	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
cis-Nerolidol	1.881	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
cis-Ocimene	1.881	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
δ-3-Carene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
δ-Limonene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
γ-Terpinene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Geraniol	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Guaiol	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Isopulegol	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Linalool	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
p-Cymene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Terpinolene	2.894	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
trans-Nerolidol	1.013	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
trans-Ocimene	1.013	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	

Cannabinoid Relative Concentration


Analyzed by 300.18 UHPLC/PDA

			Not T	ested
B-THC	732.228 mg/unit CBD		pH: Aw:	NT NT
	7.7		Not Tested Homogenei	
LOQ	Mass	Mass	Relative Con	centration
mg/unit	mg/unit	mg/g		7/-
1.702	34.365	1.145		
1.702				11/13
			\	
			77	
77.7	10.17.1		1//	
	LOQ mg/unit 1.702	799.601 mg Total Cannal LOQ Mass mg/unit mg/unit 1.702 34.365 1.702 <loq 1.702="" 732.228="" <loq="" <loq<="" td=""><td>799.601 mg/unit Total Cannabinoids LOQ Mass Mass mg/unit mg/unit mg/g 1.702 34.365 1.145 1.702 <loq 0.229="" 0.265="" 1.702="" 24.408="" 6.872="" 7.945="" 732.228="" <loq="" <loq<="" cloq="" td=""><td>732.228 mg/unit P-THC CBD 799.601 mg/unit Total Cannabinoids LOQ Mass Mass Mass Relative Cond 1,702 34,365 1,145 1,702 <loq -loq="" 0,265="" 1,702="" 1,702<="" 24.408="" 7,945="" 732.228="" <loq="" td=""></loq></td></loq></td></loq>	799.601 mg/unit Total Cannabinoids LOQ Mass Mass mg/unit mg/unit mg/g 1.702 34.365 1.145 1.702 <loq 0.229="" 0.265="" 1.702="" 24.408="" 6.872="" 7.945="" 732.228="" <loq="" <loq<="" cloq="" td=""><td>732.228 mg/unit P-THC CBD 799.601 mg/unit Total Cannabinoids LOQ Mass Mass Mass Relative Cond 1,702 34,365 1,145 1,702 <loq -loq="" 0,265="" 1,702="" 1,702<="" 24.408="" 7,945="" 732.228="" <loq="" td=""></loq></td></loq>	732.228 mg/unit P-THC CBD 799.601 mg/unit Total Cannabinoids LOQ Mass Mass Mass Relative Cond 1,702 34,365 1,145 1,702 <loq -loq="" 0,265="" 1,702="" 1,702<="" 24.408="" 7,945="" 732.228="" <loq="" td=""></loq>

1 Unit = Mint 600mg FS Tincture, 30g Total THC = 0.877 x THC-A + Δ9-THC + Δ8-THC; Total CBD = CBDa * 0.877 + CBD

Benjamin G.M. Chew, Ph.D. **Laboratory Director**

Glen Marquez Quality Control

This report is considered highly confidential and the sole property of the customer. DB Labs will not discuss any part of this study with personnel other than those authorized by the client. The results described in this report only apply to the samples analyzed. The reported result is based on a sample weight with the applicable moisture content for that sample. LOQ = Limit of Quantitation. Pesticide LOQ = Instrument Limit of Quantitation, NA = Not Analyzed. ND = Not Detected. NR = Not Reported. NT = Not Tested. PGR = Plant Growth Regulator. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. This product has been tested by DB Labs, LLC (MME# 61887736101164525768) using valid testing methodologies and a quality system as required by Nevada state law. Edibles are picked up prior to final packaging unless otherwise stated. Values reported relate only to the product tested. The uncertainty of measurement associated with the measurement result reported in this certificate is available from the organization upon request. DB Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of DB Labs.

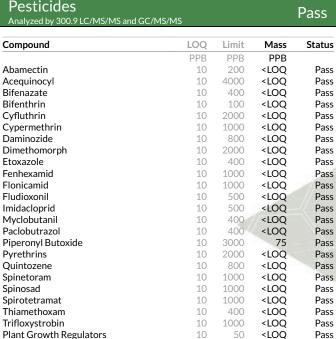
Certificate of Analysis Powered by Confident Cannabis

Sample: 2110DBL0225.10137

METRC Sample: Batch #: T0921-18

Strain: Mint 600mg FS Tincture

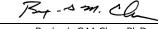
Ordered: 10/21/2021; Sampled: 10/25/2021; Completed: 10/28/2021


Premium Jane

77 Derry Street Hudson, NH 03051 855-774-5263

Mint 600mg FS Tincture

Ingestible, Tincture, Hexane


Microbials Analyzed by 300.1 Plating/QPCR			F	Pass
Quantitative Analysis	LOQ	Limit	Mass	Status
	CFU/g	CFU/g	CFU/g	
Aerobic Bacteria	900	100000	<loq< td=""><td>Pass</td></loq<>	Pass
Bile-Tolerant Gram-Negative Bacteria	90	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Coliforms	90	1000	<loq< td=""><td>Pass</td></loq<>	Pass
Yeast & Mold	90	10000	<loq< td=""><td>Pass</td></loq<>	Pass
Qualitative Analysis	Detected or Not D	etected		Status
E. Coli	Not Detected			Pass
Salmonella	Not Detecte	d		Pass

Mycotoxins Analyzed by 300.2 Elisa				Pass
Mycotoxin	LOQ	Limit	Mass	Status
	PPB	PPB	PPB	
Aflatoxins	4.0	20.0	4.7	Pass
Ochratoxin A	2.0	20.0	11.9	Pass

Heavy Metals Analyzed by 300.8 ICP/				Pass
Element	LOQ	Limit	Mass	Status
9/	PPB	PPB	PPB	1//
Arsenic	56	2000	<loq< td=""><td>Pass</td></loq<>	Pass
Cadmium	56	820	<loq< td=""><td>Pass</td></loq<>	Pass
Lead	56	1200	<loq< td=""><td>Pass</td></loq<>	Pass
Mercury	56	400	<loq< td=""><td>Pass</td></loq<>	Pass

Residual Solvents Analyzed by 300.13 GC/FID and GC/MS				
Compound	LOQ	Limit	Mass	Status
	PPM	PPM	PPM	- 1
Butanes	62	500	<loq< td=""><td>Pass</td></loq<>	Pass
Ethanol	62		93	Tested
Heptanes	62	500	<loq< td=""><td>Pass</td></loq<>	Pass
Propane	62	500	<loq< td=""><td>Pass</td></loq<>	Pass

Benjamin G.M. Chew, Ph.D. Laboratory Director

Glen Marquez **Quality Control**

This report is considered highly confidential and the sole property of the customer. DB Labs will not discuss any part of this study with personnel other than those authorized by the client. The results described in this report only apply to the samples analyzed. The reported result is based on a sample weight with the applicable moisture content for that sample. LOQ = Limit of Quantitation. Pesticide LOQ = Instrument Limit of Quantitation, NA = Not Analyzed. ND = Not Detected. NR = Not Reported. NT = Not Tested. PGR = Plant Growth Regulator. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. This product has been tested by DB Labs, LLC (MME# 61887736101164525768) using valid testing methodologies and a quality system as required by Nevada state law. Edibles are picked up prior to final packaging unless otherwise stated. Values reported relate only to the product tested. The uncertainty of measurement associated with the measurement result reported in this certificate is available from the organization upon request. DB Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of DB Labs.